Neural Models for Predicting Hole Diameters in Drilling Processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Neural Fuzzy Inference System Models for Predicting the Shear Strength of Reinforced Concrete Deep Beams

A reinforced concrete member in which the total span or shear span is especially small in relation to its depth is called a deep beam. In this study, a new approach based on the Adaptive Neural Fuzzy Inference System (ANFIS) is used to predict the shear strength of reinforced concrete (RC) deep beams. A constitutive relationship was obtained correlating the ultimate load with seven mechanical a...

متن کامل

Artificial neural network models for production of nano-grained structure in AISI 304L stainless steel by predicting thermo-mechanical parameters

An artificial neural network (ANN) model is developed for the analysis, simulation, and prediction of the austenite reversion in the thermo-mechanical treatment of 304L austenitic stainless steel. The results of the ANN model are in good agreement with the experimental data. The model is used to predict an appropriate annealing condition for austenite reversion through the martensite to austeni...

متن کامل

Diameters in preferential attachment models

In this paper, we investigate the diameter in preferential attachment (PA-) models, thus quantifying the statement that these models are small worlds. The models studied here are such that edges are attached to older vertices proportional to the degree plus a constant, i.e., we consider affine PA-models. There is a substantial amount of literature proving that, quite generally, PA-graphs posses...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia CIRP

سال: 2013

ISSN: 2212-8271

DOI: 10.1016/j.procir.2013.09.010